การวิเคราะห์ทางเทคนิค: ค่าเฉลี่ยเคลื่อนไหวส่วนใหญ่รูปแบบแผนภูมิแสดงการเปลี่ยนแปลงของราคาในรูปแบบต่างๆ ซึ่งอาจทำให้ผู้ค้าได้รับความคิดในเรื่องแนวโน้มความปลอดภัยโดยรวม หนึ่งวิธีง่ายๆที่ผู้ค้าใช้ในการต่อสู้นี้คือการใช้ค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่คือราคาเฉลี่ยของการรักษาความปลอดภัยในช่วงเวลาที่กำหนด โดยการวางแผนการรักษาความปลอดภัยราคาเฉลี่ยการเคลื่อนไหวของราคาจะเรียบออก เมื่อความผันผวนแบบวันต่อวันจะถูกเอาออกผู้ค้าจะสามารถระบุแนวโน้มที่แท้จริงได้ดีขึ้นและเพิ่มความเป็นไปได้ที่จะใช้ประโยชน์ได้ ประเภทของค่าเฉลี่ยเคลื่อนที่มีค่าเฉลี่ยเคลื่อนที่หลายแบบแตกต่างกันไปตามที่คำนวณ แต่วิธีตีความค่าเฉลี่ยแต่ละค่ายังคงเหมือนเดิม การคำนวณมีความแตกต่างกันเพียงอย่างเดียวกับการถ่วงน้ำหนักที่พวกเขาวางไว้กับข้อมูลราคาขยับจากน้ำหนักที่เท่ากันของแต่ละจุดราคาไปเป็นน้ำหนักที่มากขึ้นเมื่อเทียบกับข้อมูลล่าสุด สามประเภทที่พบมากที่สุดของค่าเฉลี่ยเคลื่อนที่อยู่ที่ง่ายๆ เชิงเส้นและเลขชี้กำลัง Simple Moving Average (SMA) นี่เป็นวิธีที่นิยมใช้ในการคำนวณค่าเฉลี่ยเคลื่อนที่ของราคา ใช้เวลาเพียงผลรวมของราคาปิดที่ผ่านมาในช่วงเวลาและหารผลตามจำนวนราคาที่ใช้ในการคำนวณ ตัวอย่างเช่นในค่าเฉลี่ยเคลื่อนที่ 10 วันราคาปิดสุดท้าย 10 รายการจะรวมเข้าด้วยกันและหารด้วย 10 ดังที่คุณเห็นในรูปที่ 1 ผู้ประกอบการค้าสามารถที่จะทำให้ค่าเฉลี่ยของการตอบสนองต่อการเปลี่ยนแปลงราคาโดยเฉลี่ยน้อยลงโดยการเพิ่มจำนวน ของรอบระยะเวลาที่ใช้ในการคำนวณ การเพิ่มจำนวนช่วงเวลาในการคำนวณเป็นวิธีที่ดีที่สุดในการวัดความแข็งแกร่งของแนวโน้มในระยะยาวและโอกาสที่จะกลับรายการ หลายคนอ้างว่าประโยชน์ของค่าเฉลี่ยประเภทนี้มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีผลกระทบต่อผลลัพธ์โดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากขึ้นและควรมีการถ่วงน้ำหนักที่สูงขึ้น การวิพากษ์วิจารณ์ประเภทนี้เป็นหนึ่งในปัจจัยหลักที่นำไปสู่การประดิษฐ์รูปแบบอื่น ๆ ของค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยถ่วงน้ำหนักเชิงเส้นตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่นี้เป็นค่าเฉลี่ยที่น้อยที่สุดจากสามตัวและใช้เพื่อแก้ปัญหาเกี่ยวกับการถ่วงน้ำหนักเท่ากัน เส้นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเส้นตรงคำนวณจากผลรวมของราคาปิดทั้งหมดในช่วงเวลาหนึ่งและคูณด้วยตำแหน่งของจุดข้อมูลและหารด้วยผลรวมของจำนวนงวด ตัวอย่างเช่นในระยะเวลาห้าวันโดยถัวเฉลี่ยถ่วงน้ำหนักราคาปิดในปัจจุบันจะคูณด้วยห้าวันวานโดยสี่เป็นต้นจนกระทั่งถึงวันแรกในช่วงระยะเวลา ตัวเลขเหล่านี้จะถูกรวมเข้าด้วยกันและหารด้วยผลรวมของตัวคูณ ค่าเฉลี่ยการเคลื่อนที่แบบ Exponential (EMA) การคำนวณค่าเฉลี่ยเคลื่อนที่นี้ใช้ปัจจัยที่ราบเรียบเพื่อให้น้ำหนักที่สูงขึ้นในจุดข้อมูลล่าสุดและถือว่ามีประสิทธิภาพมากกว่าค่าเฉลี่ยถ่วงน้ำหนักแบบเส้นตรง ไม่จำเป็นต้องมีความเข้าใจในการคำนวณสำหรับผู้ค้าส่วนใหญ่เนื่องจากส่วนใหญ่แพคเกจแผนภูมิทำคำนวณสำหรับคุณ สิ่งสำคัญที่สุดที่ต้องจดจำเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบเสวนาก็คือการตอบสนองต่อข้อมูลใหม่ ๆ เมื่อเทียบกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย การตอบสนองนี้เป็นหนึ่งในปัจจัยสำคัญที่ทำให้ค่าเฉลี่ยเคลื่อนที่ของทางเลือกในหมู่ผู้ค้าทางเทคนิคจำนวนมาก ดังที่เห็นในรูปที่ 2 EMA ระยะเวลา 15 วันจะเพิ่มขึ้นและลดลงเร็วกว่า SMA 15 ช่วง ความแตกต่างเล็กน้อยนี้ดูเหมือนจะไม่ค่อยมากนัก แต่เป็นปัจจัยสำคัญที่ต้องคำนึงถึงเนื่องจากอาจมีผลกระทบต่อ การใช้ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อระบุแนวโน้มในปัจจุบันและการกลับรายการแนวโน้มเช่นเดียวกับการตั้งค่าการสนับสนุนและระดับความต้านทาน ค่าเฉลี่ยเคลื่อนที่สามารถใช้เพื่อระบุได้อย่างรวดเร็วว่าการรักษาความปลอดภัยมีการเคลื่อนไหวในขาขึ้นหรือขาลงหรือไม่ขึ้นอยู่กับทิศทางของค่าเฉลี่ยเคลื่อนที่ ดังที่เห็นในรูปที่ 3 เมื่อค่าเฉลี่ยเคลื่อนที่เคลื่อนขึ้นสูงและราคาอยู่เหนือระดับความปลอดภัยจะอยู่ในแนวโน้มขาขึ้น ในทางกลับกันค่าเฉลี่ยเคลื่อนที่ที่หดตัวลงพร้อมกับราคาด้านล่างสามารถนำมาใช้เป็นสัญญาณขาลง อีกวิธีหนึ่งในการกำหนดโมเมนตัมคือการดูลำดับของค่าเฉลี่ยเคลื่อนที่สองเส้น เมื่อค่าเฉลี่ยระยะสั้นอยู่เหนือค่าเฉลี่ยระยะยาวแนวโน้มจะเพิ่มขึ้น ในทางกลับกันค่าเฉลี่ยระยะยาวที่สูงกว่าค่าเฉลี่ยระยะสั้นจะส่งผลให้แนวโน้มการปรับตัวลดลง การย้ายการพลิกกลับของค่าเฉลี่ยจะเกิดขึ้นในสองวิธีหลัก ๆ คือเมื่อราคาเคลื่อนผ่านค่าเฉลี่ยเคลื่อนที่และเมื่อเคลื่อนที่ผ่านค่าไขว้เฉลี่ยเคลื่อนไหว สัญญาณแรกที่พบคือเมื่อราคาเคลื่อนผ่านค่าเฉลี่ยเคลื่อนที่ที่สำคัญ ตัวอย่างเช่นเมื่อราคาหลักทรัพย์ที่อยู่ในช่วงขาลงลดลงต่ำกว่าค่าเฉลี่ยเคลื่อนที่ในช่วง 50 เช่นในรูปที่ 4 จะเป็นสัญญาณว่าแนวโน้มขากลับอาจย้อนกลับ สัญญาณอื่น ๆ ของการกลับรายการแนวโน้มคือเมื่อค่าเฉลี่ยเคลื่อนที่หนึ่งตัวผ่านไปมาอีก ตัวอย่างเช่นที่คุณเห็นในรูปที่ 5 ถ้าค่าเฉลี่ยเคลื่อนที่ 15 วันสูงกว่าค่าเฉลี่ยเคลื่อนที่ 50 วันนั่นเป็นสัญญาณบวกที่ราคาจะเริ่มเพิ่มขึ้น หากระยะเวลาที่ใช้ในการคำนวณค่อนข้างสั้นตัวอย่างเช่น 15 และ 35 อาจส่งสัญญาณการกลับรายการในระยะสั้น ในทางกลับกันเมื่อค่าเฉลี่ยสองค่าที่มีกรอบเวลาที่ค่อนข้างยาว (เช่น 50 และ 200) จะใช้เพื่อแนะนำการเปลี่ยนแปลงในระยะยาว อีกวิธีหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่คือการระบุระดับการสนับสนุนและความต้านทาน ไม่ใช่เรื่องแปลกที่จะเห็นสต็อกที่ได้รับการล้มหยุดการลดลงและทิศทางย้อนกลับเมื่อมันกระทบการสนับสนุนของค่าเฉลี่ยเคลื่อนที่ที่สำคัญ การเคลื่อนที่ผ่านค่าเฉลี่ยเคลื่อนที่ที่สำคัญมักถูกใช้เป็นสัญญาณโดยผู้ค้าทางเทคนิคว่าเทรนด์กำลังถอยกลับ ตัวอย่างเช่นถ้าราคาพักผ่านเส้นค่าเฉลี่ยเคลื่อนที่ 200 วันในทิศทางที่ลดลงสัญญาณนี้จะเป็นสัญญาณว่าแนวโน้มขากลับกำลังย้อนกลับ ค่าเฉลี่ยเคลื่อนที่เป็นเครื่องมือที่มีประสิทธิภาพในการวิเคราะห์แนวโน้มด้านความปลอดภัย พวกเขาให้การสนับสนุนที่มีประโยชน์และจุดความต้านทานและใช้งานง่ายมาก กรอบเวลาที่พบบ่อยที่สุดที่ใช้เมื่อสร้างค่าเฉลี่ยเคลื่อนที่ ได้แก่ 200 วัน 100 วัน 50 วัน 20 วันและ 10 วัน ค่าเฉลี่ย 200 วันนับเป็นวัดที่ดีสำหรับปีการค้าขายซึ่งเป็นค่าเฉลี่ยครึ่งวันของ 100 วันซึ่งเป็นค่าเฉลี่ย 50 วันของไตรมาสโดยเฉลี่ยอยู่ที่ 20 วันต่อเดือนและ 10 วันเฉลี่ย 2 สัปดาห์ การเคลื่อนย้ายค่าเฉลี่ยช่วยให้ผู้ค้าทางเทคนิคสามารถเอื้ออำนวยต่อการเคลื่อนไหวของราคาในแต่ละวันซึ่งทำให้ผู้ค้ามองเห็นแนวโน้มราคาได้ชัดเจนยิ่งขึ้น จนถึงตอนนี้เรามุ่งเน้นการเคลื่อนไหวของราคาผ่านแผนภูมิและค่าเฉลี่ย ในส่วนถัดไปดูเทคนิคอื่น ๆ ที่ใช้เพื่อยืนยันการเคลื่อนไหวและรูปแบบของราคาวิธีการใช้ค่าเฉลี่ยเคลื่อนที่ในการซื้อหุ้นค่าเฉลี่ยเคลื่อนที่ (MA) เป็นเครื่องมือวิเคราะห์ทางเทคนิคที่เรียบง่ายซึ่งช่วยให้ข้อมูลราคาดีขึ้นโดยการสร้างการอัปเดตอย่างต่อเนื่อง ราคาเฉลี่ย. ค่าเฉลี่ยจะอยู่ในช่วงเวลาหนึ่งเช่น 10 วัน 20 นาที 30 สัปดาห์หรือช่วงเวลาใดก็ได้ที่ผู้ขายเลือก มีข้อได้เปรียบในการใช้ค่าเฉลี่ยเคลื่อนที่ในการซื้อขายรวมถึงตัวเลือกในประเภทค่าเฉลี่ยเคลื่อนที่ที่จะใช้ กลยุทธ์การย้ายเฉลี่ยยังเป็นที่นิยมและสามารถปรับแต่งให้เหมาะกับช่วงเวลาใด ๆ เหมาะกับนักลงทุนระยะยาวและผู้ค้าระยะสั้น ทำไมต้องใช้ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่สามารถช่วยลดปริมาณเสียงในแผนภูมิราคาได้ มองไปที่ทิศทางของค่าเฉลี่ยเคลื่อนที่เพื่อดูแนวคิดพื้นฐานของราคาที่เคลื่อนไหว ราคาปรับตัวขึ้นและราคาปรับตัวลง (หรือเมื่อเร็ว ๆ นี้) โดยรวมลดลงและราคาปรับตัวลงโดยรวมเคลื่อนไปด้านข้างและราคาน่าจะอยู่ในช่วง ค่าเฉลี่ยเคลื่อนที่สามารถทำหน้าที่เป็นตัวสนับสนุนหรือความต้านทาน ในระยะขาขึ้นค่าเฉลี่ยเคลื่อนที่ 50 วัน 100 วันหรือ 200 วันอาจเป็นระดับการสนับสนุนดังที่แสดงในรูปด้านล่าง นี่เป็นเพราะการกระทำโดยเฉลี่ยเช่นพื้น (การสนับสนุน) ดังนั้นราคาจึงกลับขึ้นมา ในขาลงค่าเฉลี่ยถ่วงน้ำหนักอาจทำหน้าที่เป็นความต้านทานเช่นเพดานราคากระทบมันแล้วเริ่มที่จะลดลงอีกครั้ง ราคาเคยชินเคารพค่าเฉลี่ยเคลื่อนที่ในลักษณะนี้ ราคาอาจไหลผ่านเล็กน้อยหรือหยุดและย้อนกลับก่อนที่จะถึง เป็นแนวทางทั่วไปถ้าราคาอยู่เหนือค่าเฉลี่ยที่เคลื่อนที่แนวโน้มจะเพิ่มขึ้น หากราคาต่ำกว่าค่าเฉลี่ยเคลื่อนที่แนวโน้มจะลดลง ค่าเฉลี่ยเคลื่อนที่สามารถมีความยาวแตกต่างกันได้ (กล่าวสั้น ๆ ) ดังนั้นหนึ่งอาจบ่งบอกถึงแนวโน้มขาขึ้นขณะที่อีกค่าหนึ่งบ่งบอกถึงแนวโน้มขาลง ประเภทของค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่สามารถคำนวณได้หลายวิธี ค่าเฉลี่ยเคลื่อนที่ห้าวัน (SMA) เพียงแค่เพิ่มขึ้นห้าราคาปิดล่าสุดในชีวิตประจำวันและหารด้วยห้าเพื่อสร้างค่าเฉลี่ยใหม่ในแต่ละวัน แต่ละค่าเฉลี่ยจะเชื่อมต่อกันทำให้เกิดเส้นไหลเอกพจน์ ค่าเฉลี่ยเคลื่อนที่ที่นิยมอีกอย่างหนึ่งคือค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) การคำนวณมีความซับซ้อนมากขึ้น แต่โดยทั่วไปใช้น้ำหนักมากขึ้นกับราคาล่าสุด วางแผน SMA 50 วันและ EMA 50 วันในแผนภูมิเดียวกันและคุณจะสังเกตเห็นว่า EMA ทำปฏิกิริยากับการเปลี่ยนแปลงราคาได้เร็วกว่า SMA เนื่องจากมีการเพิ่มน้ำหนักข้อมูลราคาล่าสุด ซอฟต์แวร์การทำแผนที่และแพลตฟอร์มการซื้อขายทำคำนวณดังนั้นจึงไม่มีการใช้คณิตศาสตร์ด้วยตนเองเพื่อใช้ MA ประเภทของ MA ไม่ดีกว่าอีก EMA อาจทำงานได้ดีขึ้นในตลาดหุ้นหรือตลาดการเงินเป็นระยะ ๆ และในบางครั้ง SMA อาจทำงานได้ดีขึ้น กรอบเวลาที่เลือกสำหรับค่าเฉลี่ยเคลื่อนที่จะมีบทบาทสำคัญในประสิทธิภาพของการทำงาน (ไม่ขึ้นกับประเภท) ความยาวเฉลี่ยที่เคลื่อนที่ได้คือ 10, 20, 50, 100 และ 200 ความยาวเหล่านี้สามารถใช้กับกรอบเวลาแผนภูมิใด ๆ (หนึ่งนาทีทุกวันรายสัปดาห์ ฯลฯ ) ขึ้นอยู่กับเส้นขอบการค้าของผู้ค้า กรอบเวลาหรือความยาวที่คุณเลือกสำหรับค่าเฉลี่ยเคลื่อนที่ซึ่งเรียกอีกอย่างว่าช่วงเวลาที่มองย้อนกลับสามารถมีบทบาทอย่างมากในการที่มีประสิทธิภาพ MA ที่มีกรอบเวลาสั้น ๆ จะตอบสนองต่อการเปลี่ยนแปลงของราคาได้เร็วกว่า MA ที่มีระยะเวลาย้อนหลังนาน ในภาพด้านล่างค่าเฉลี่ยเคลื่อนที่ 20 วันจะติดตามราคาที่เกิดขึ้นจริงกว่า 100 วันอย่างใกล้ชิด 20 วันอาจเป็นประโยชน์ในการวิเคราะห์แก่ผู้ประกอบการที่มีอายุสั้นเนื่องจากราคาดังกล่าวใกล้เคียงกับราคามากขึ้นและทำให้เกิดความล่าช้าน้อยกว่าค่าเฉลี่ยเคลื่อนที่ระยะยาว ความล่าช้าคือเวลาที่ใช้สำหรับค่าเฉลี่ยเคลื่อนที่ในการส่งสัญญาณการกลับรายการที่อาจเกิดขึ้น การเรียกคืนเป็นแนวทางทั่วไปเมื่อราคาอยู่เหนือค่าเฉลี่ยที่เคลื่อนที่แนวโน้มจะพิจารณาขึ้น ดังนั้นเมื่อราคาปรับตัวลดลงต่ำกว่าค่าเฉลี่ยที่เคลื่อนที่จะส่งผลให้เกิดการกลับรายการที่อาจเกิดขึ้นจาก MA ค่าเฉลี่ยเคลื่อนที่ 20 วันจะให้สัญญาณการกลับรายการมากขึ้นกว่าค่าเฉลี่ยเคลื่อนที่ 100 วัน ค่าเฉลี่ยเคลื่อนที่สามารถยาวได้ 15, 28, 89 ฯลฯ การปรับค่าเฉลี่ยเคลื่อนที่เพื่อให้ได้ข้อมูลที่ถูกต้องมากขึ้นเกี่ยวกับข้อมูลในอดีตอาจช่วยสร้างสัญญาณที่ดีขึ้นในอนาคต กลยุทธ์การซื้อขาย - Crossovers Crossovers เป็นหนึ่งในกลยุทธ์เฉลี่ยที่เคลื่อนไหวโดยเฉลี่ย ประเภทแรกคือครอสโอเวอร์ราคา เรื่องนี้ถูกกล่าวถึงก่อนหน้านี้และเมื่อราคาสูงกว่าหรือต่ำกว่าค่าเฉลี่ยเคลื่อนที่เพื่อบ่งชี้ถึงแนวโน้มการเปลี่ยนแปลงที่อาจเกิดขึ้น กลยุทธ์อีกอย่างหนึ่งก็คือการใช้ค่าเฉลี่ยเคลื่อนที่สองค่าเป็นแผนภูมิหนึ่งและยาวอีกหนึ่งอัน เมื่อ MA สั้นข้ามเหนือ MA ระยะยาวสัญญาณซื้อตามที่บ่งชี้ว่าแนวโน้มมีการขยับขึ้นซึ่งเรียกว่า Cross สีทอง เมื่อ MA สั้นลงมาต่ำกว่า MA ในระยะยาวสัญญาณการขายของมันบ่งชี้ว่าแนวโน้มมีการเคลื่อนตัวลง ค่านี้เรียกว่าเป็นค่าเฉลี่ย deaddeath ค่าเฉลี่ยเคลื่อนที่คำนวณจากข้อมูลที่ผ่านมาและไม่มีอะไรเกี่ยวกับการคำนวณในลักษณะคาดการณ์ ดังนั้นผลการคำนวณโดยใช้ค่าเฉลี่ยเคลื่อนที่สามารถสุ่มได้ - ในบางครั้งตลาดมีความน่าเชื่อถือและสัญญาณการค้า และบางครั้งก็แสดงให้เห็นว่าไม่มีการเคารพ ปัญหาที่สำคัญอย่างหนึ่งก็คือถ้าการดำเนินการด้านราคากลายเป็นราคาที่ผันผวนราคาอาจแกว่งไปมาเป็นสัญญาณสัญญาณย้อนกลับหลายทิศทาง เมื่อสิ่งนี้เกิดขึ้นได้ดีที่สุดให้หลีกเลี่ยงหรือใช้ตัวบ่งชี้อื่นเพื่อช่วยชี้แจงแนวโน้ม สิ่งเดียวที่สามารถเกิดขึ้นได้กับการครอสโอเวอร์ MA ซึ่ง MAs ได้รับการพันกันเป็นระยะเวลาหนึ่งโดยเริ่มต้นธุรกิจการค้าหลายอย่าง ค่าเฉลี่ยเคลื่อนที่ทำงานได้ดีขึ้นในสภาวะที่มีแนวโน้มสูง แต่มักไม่ดีในสภาวะที่แปรปรวนหรือแตกต่างกัน การปรับกรอบเวลาสามารถช่วยในเรื่องนี้ได้ชั่วคราวแม้ว่าในบางประเด็นประเด็นเหล่านี้มักเกิดขึ้นโดยไม่คำนึงถึงกรอบเวลาที่เลือกสำหรับ MA (s) ค่าเฉลี่ยเคลื่อนที่ช่วยลดข้อมูลราคาโดยการทำให้เรียบและสร้างเส้นไหล วิธีนี้สามารถทำให้แนวโน้มในการแยกตัวง่ายขึ้น ค่าเฉลี่ยเคลื่อนที่แบบเสวนาตอบสนองต่อการเปลี่ยนแปลงของราคาได้ง่ายกว่าค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ในบางกรณีอาจเป็นเรื่องที่ดีและในบางกรณีอาจทำให้เกิดสัญญาณผิดพลาด การเคลื่อนไหวโดยเฉลี่ยที่มีระยะเวลาย้อนกลับสั้นกว่า (เช่น 20 วัน) จะตอบสนองต่อการเปลี่ยนแปลงราคาได้เร็วกว่าค่าเฉลี่ยที่มีระยะเวลามองยาว (200 วัน) การย้ายไขว้เฉลี่ยเป็นกลยุทธ์ยอดนิยมสำหรับทั้งรายการและทางออก MAs ยังสามารถเน้นพื้นที่ของการสนับสนุนหรือความต้านทานที่อาจเกิดขึ้น แม้ว่าค่าดังกล่าวอาจมีการคาดการณ์ก็ตามค่าเฉลี่ยเคลื่อนที่จะขึ้นอยู่กับข้อมูลในอดีตเสมอและเพียงแสดงราคาเฉลี่ยในช่วงเวลาหนึ่งเท่านั้น ข้อ 50 คือข้อตกลงการเจรจาต่อรองและข้อยุติในสนธิสัญญา EU ที่ระบุขั้นตอนที่จะต้องดำเนินการสำหรับประเทศใด ๆ ที่ เบต้าเป็นตัวชี้วัดความผันผวนหรือความเสี่ยงอย่างเป็นระบบของการรักษาความปลอดภัยหรือผลงานเมื่อเทียบกับตลาดโดยรวม ประเภทของภาษีที่เรียกเก็บจากเงินทุนที่เกิดจากบุคคลและ บริษัท กำไรจากการลงทุนเป็นผลกำไรที่นักลงทุนลงทุน คำสั่งซื้อความปลอดภัยที่ต่ำกว่าหรือต่ำกว่าราคาที่ระบุ คำสั่งซื้อวงเงินอนุญาตให้ผู้ค้าและนักลงทุนระบุ กฎสรรพากรภายใน (Internal Internal Revenue Service หรือ IRS) ที่อนุญาตให้มีการถอนเงินที่ปลอดจากบัญชี IRA กฎกำหนดให้ การขายหุ้นครั้งแรกโดย บริษัท เอกชนต่อสาธารณชน การเสนอขายหุ้นมักออกโดย บริษัท ขนาดเล็กที่มีอายุน้อยกว่าที่กำลังมองหาค่าเฉลี่ยค่าเฉลี่ยค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยค่าเฉลี่ยหมายถึงค่าสถิติแรกและเป็นหนึ่งในสถิติสรุปที่มีประโยชน์มากที่สุดในการคำนวณ เมื่อข้อมูลอยู่ในรูปแบบของชุดเวลาซีรี่ส์หมายถึงการวัดที่เป็นประโยชน์ แต่ไม่ได้สะท้อนถึงลักษณะพลวัตของข้อมูล ค่าเฉลี่ยที่คำนวณจากช่วงสั้น ๆ ก่อนหน้าช่วงเวลาปัจจุบันหรือตรงกลางในช่วงเวลาปัจจุบันมักมีประโยชน์มากกว่า เนื่องจากค่าเฉลี่ยดังกล่าวจะแปรผันหรือเคลื่อนย้ายเนื่องจากระยะเวลาปัจจุบันจะเคลื่อนที่จากเวลา t 2, t 3 เป็นต้นเรียกว่าค่าเฉลี่ยเคลื่อนที่ (Mas) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยคือ (โดยปกติ) ค่าเฉลี่ยที่ไม่มีการถัวเฉลี่ยของค่าก่อนหน้า k ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลังเป็นหลักเหมือนกับค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย แต่มีส่วนร่วมกับค่าเฉลี่ยที่ถ่วงน้ำหนักโดยความใกล้ชิดกับเวลาปัจจุบัน เนื่องจากไม่มีตัวอักษร แต่เป็นชุดค่าเฉลี่ยเคลื่อนที่ทั้งหมดสำหรับชุดใดก็ตามชุดของ Mas สามารถถูกจัดวางลงบนกราฟวิเคราะห์เป็นชุดและใช้ในการสร้างแบบจำลองและการคาดการณ์ ช่วงของแบบจำลองสามารถสร้างโดยใช้ค่าเฉลี่ยเคลื่อนที่และเป็นที่รู้จักในรูปแบบ MA ถ้าโมเดลดังกล่าวรวมกับโมเดลอัตถิภาวนิยม (AR) รูปแบบคอมโพสิตที่เป็นที่รู้จักกันในชื่อ ARMA หรือ ARIMA (แบบบูรณาการ) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเนื่องจากชุดเวลาสามารถถือได้ว่าเป็นชุดของค่า, t 1,2,3,4, n ค่าเฉลี่ยของค่าเหล่านี้สามารถคำนวณได้ ถ้าเราคิดว่า n มีขนาดค่อนข้างใหญ่และเราเลือกจำนวนเต็ม k ซึ่งน้อยกว่า n เราสามารถคำนวณชุดค่าเฉลี่ยบล็อกหรือค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ (ของคำสั่ง k): แต่ละค่าจะแสดงค่าเฉลี่ยของค่าข้อมูลในช่วงเวลาสังเกตการณ์ k โปรดทราบว่า MA ที่เป็นไปได้ครั้งแรกของคำสั่ง k GT0 คือสำหรับ t k โดยทั่วไปเราสามารถลด subscript พิเศษในนิพจน์ด้านบนและเขียนได้: ค่านี้ระบุว่าค่าเฉลี่ยที่เวลา t เป็นค่าเฉลี่ยที่ง่ายของค่าที่สังเกตได้ ณ เวลา t และขั้นตอน k-1 ก่อนหน้า ถ้าใช้น้ำหนักที่ลดการมีส่วนร่วมของการสังเกตที่ไกลออกไปในเวลาค่าเฉลี่ยเคลื่อนที่จะกล่าวได้ว่าเป็นแบบเรียบ ค่าเฉลี่ยเคลื่อนที่มักใช้เป็นรูปแบบของการคาดการณ์โดยที่ค่าประมาณสำหรับชุดในเวลา t 1, S t1 ถูกนำมาเป็น MA สำหรับระยะเวลาถึงและรวมถึงเวลา t เช่น. การประมาณในปัจจุบันคำนวณจากค่าเฉลี่ยที่บันทึกไว้ก่อนหน้านี้และรวมถึงวันวาน (สำหรับข้อมูลรายวัน) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายสามารถเห็นได้ว่าเป็นรูปแบบการทำให้เรียบ ในตัวอย่างที่แสดงด้านล่างชุดข้อมูลมลพิษทางอากาศที่แสดงในบทนำสู่หัวข้อนี้ได้รับการเพิ่มขึ้นโดยเส้นค่าเฉลี่ยเคลื่อนที่ 7 วัน (MA) ซึ่งแสดงเป็นสีแดง ที่สามารถมองเห็นได้สาย MA ช่วยให้จุดสูงสุดและร่องในข้อมูลเป็นไปอย่างราบรื่นและเป็นประโยชน์ในการระบุแนวโน้ม สูตรคำนวณการคำนวณล่วงหน้าหมายถึงจุดข้อมูล k -1 จุดแรกไม่มีค่า MA แต่หลังจากนั้นการคำนวณจะขยายไปยังจุดข้อมูลสุดท้ายในชุดข้อมูล ค่าเฉลี่ยของวัน PM10 แหล่งที่มาของ Greenwich: London Air Quality Network, londonair. org. uk เหตุผลหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบง่ายๆในลักษณะที่อธิบายไว้คือค่าที่คำนวณได้สำหรับช่วงเวลาทั้งหมดตั้งแต่เวลา tk ขึ้นไปจนถึงปัจจุบันและ เป็นวัดใหม่ที่ได้รับสำหรับเวลา t 1, MA สำหรับเวลา t 1 สามารถเพิ่มไปยังชุดที่คำนวณแล้ว นี่เป็นขั้นตอนง่ายๆสำหรับชุดข้อมูลแบบไดนามิก อย่างไรก็ตามมีบางประเด็นเกี่ยวกับแนวทางนี้ มีเหตุผลที่จะยืนยันว่าค่าเฉลี่ยในช่วง 3 ช่วงสุดท้ายกล่าวคือควรตั้งอยู่ที่เวลา t -1 ไม่ใช่เวลา t และสำหรับ MA มากกว่าจำนวนคู่ของระยะเวลาบางทีมันควรจะอยู่ที่จุดกึ่งกลางระหว่างสองช่วงเวลา วิธีแก้ปัญหานี้คือการใช้การคำนวณ MA ซึ่งอยู่ตรงกลางซึ่ง MA ในเวลา t เป็นค่าเฉลี่ยของชุดสมมาตรของค่ารอบ t แม้จะมีประโยชน์อย่างเห็นได้ชัด แต่วิธีนี้ใช้ไม่ได้โดยทั่วไปเนื่องจากต้องการข้อมูลที่พร้อมใช้งานสำหรับเหตุการณ์ในอนาคตซึ่งอาจจะไม่ใช่กรณีนี้ ในกรณีที่การวิเคราะห์ทั้งหมดเป็นชุดที่มีอยู่การใช้ Mas ไว้ตรงกลางอาจเป็นที่นิยมกว่า ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายอาจถือได้ว่าเป็นรูปแบบหนึ่งของการปรับให้เรียบลบองค์ประกอบความถี่สูงบางส่วนของชุดเวลาและเน้นแนวโน้ม (แต่ไม่ลบ) ในลักษณะเดียวกันกับแนวคิดทั่วไปของการกรองแบบดิจิทัล แท้จริงค่าเฉลี่ยเคลื่อนที่คือรูปแบบของตัวกรองเชิงเส้น คุณสามารถใช้การคำนวณค่าเฉลี่ยเคลื่อนที่เป็นชุดที่ได้รับการปรับให้เรียบขึ้นแล้วเช่นการทำให้เรียบหรือกรองชุดที่เรียบขึ้นไปแล้ว ตัวอย่างเช่นมีค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 2 เราสามารถพิจารณาว่าคำนวณโดยใช้น้ำหนักดังนั้น MA ที่ x 2 0.5 x 1 0.5 x 2 ในทำนองเดียวกัน MA ที่ x 3 0.5 x 2 0.5 x 3 ถ้าเรา เราใช้ 0.5 x 2 0.5 x 3 0.5 (0.5 x 1 0.5 x 2) 0.5 (0.5 x 2 0.5 x 3) 0.25 x 1 0.5 x 2 0.25 x 3 เช่นการกรองแบบ 2 ขั้นตอน กระบวนการ (หรือ convolution) ได้สร้างค่าเฉลี่ยเคลื่อนที่แบบสมมาตรที่มีการถ่วงน้ำหนักที่มีการเปลี่ยนแปลงโดยมีน้ำหนัก หลาย convolutions สามารถผลิตค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักค่อนข้างซับซ้อนซึ่งบางส่วนมีการใช้งานเฉพาะในสาขาพิเศษเช่นในการคำนวณการประกันชีวิต ค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการลบเอฟเฟ็กต์เป็นระยะ ๆ หากคำนวณด้วยระยะเวลาเป็นระยะ ๆ ตามที่ทราบ ตัวอย่างเช่นเมื่อมีข้อมูลรายเดือนข้อมูลตามฤดูกาลสามารถเปลี่ยนแปลงได้โดยการใช้ค่าเฉลี่ยเคลื่อนที่ 12 เดือนที่สมมาตรกับทุกเดือนที่มีการถ่วงน้ำหนักอย่างเท่าเทียมกันยกเว้นกรณีที่ 1 และครั้งสุดท้ายที่มีการถ่วงน้ำหนักด้วย 12 เนื่องจากมี เป็นเวลา 13 เดือนในรูปแบบสมมาตร (ปัจจุบัน, t. - 6 เดือน) ทั้งหมดถูกแบ่งโดย 12 ขั้นตอนที่คล้ายกันสามารถนำมาใช้สำหรับระยะเวลาที่กำหนดไว้อย่างชัดเจน ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก (Expedential Weighted Moving Average - EWMA) โดยใช้สูตรค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ: การสังเกตทั้งหมดมีการถ่วงน้ำหนักอย่างเท่าเทียมกัน ถ้าเราเรียกว่าน้ำหนักเท่ากันนี้อัลฟา t แต่ละ k น้ำหนักจะเท่ากับ 1 k ดังนั้นผลรวมของน้ำหนักจะเป็น 1 และสูตรจะเป็น: เราได้เห็นแล้วว่าการใช้งานหลายขั้นตอนนี้ส่งผลให้น้ำหนักที่แตกต่างกัน ด้วยค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกกำลังให้ความสำคัญกับค่าเฉลี่ยจากการสังเกตที่ถูกลบออกไปในเวลามากขึ้นจะลดลงด้วยเหตุนี้จึงเน้นเหตุการณ์ที่เกิดขึ้นเมื่อเร็ว ๆ นี้ โดยทั่วไปจะมีการปรับค่าพารามิเตอร์การให้ราบเรียบ alpha lt1 ll1 และสูตรที่ได้รับการแก้ไขไปเป็น: รูปแบบสมมาตรของสูตรนี้จะมีรูปแบบดังนี้: ถ้าน้ำหนักในรูปแบบสมมาตรถูกเลือกเป็นเงื่อนไขของข้อกำหนดของการขยายตัวแบบทวินาม (1212) 2q พวกเขาจะรวมกันเป็น 1 และเมื่อ q กลายเป็นขนาดใหญ่จะใกล้เคียงกับการแจกแจงแบบปกติ นี่คือรูปแบบของการถ่วงน้ำหนักของเคอร์เนลโดยมีฟังก์ชัน Binomial ทำหน้าที่เป็นฟังก์ชันเคอร์เนล การแกว่งสองขั้นตอนที่อธิบายไว้ในหมวดย่อยก่อนหน้านี้คือการจัดเรียงนี้อย่างแม่นยำด้วย q 1 ซึ่งให้น้ำหนัก ในการทำให้เรียบเรียบขึ้นจำเป็นต้องใช้ชุดของน้ำหนักที่รวมกันเป็น 1 และลดขนาดทางเรขาคณิต น้ำหนักที่ใช้มีรูปแบบดังนี้: เพื่อแสดงให้เห็นว่าน้ำหนักเหล่านี้รวมกันเป็น 1 ให้พิจารณาการขยายตัวเป็น 1 เป็นชุด เราสามารถเขียนและขยายนิพจน์ในวงเล็บโดยใช้สูตรทวินาม (1- x) p. โดยที่ x (1-) และ p -1 ซึ่งจะให้: ค่านี้จะให้รูปแบบของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักของแบบฟอร์ม: ผลรวมนี้สามารถเขียนเป็นความสัมพันธ์ที่เกิดซ้ำได้ซึ่งช่วยลดความซับซ้อนในการคำนวณและหลีกเลี่ยงปัญหาที่ระบบการถ่วงน้ำหนัก ควรมีความยาวไม่ จำกัด สำหรับน้ำหนักที่จะรวมกันเป็น 1 (สำหรับค่าอัลฟ่าเล็กน้อยนี่ไม่ใช่กรณีปกติ) สัญกรณ์ที่ใช้โดยผู้เขียนที่แตกต่างกันจะแตกต่างกันออกไป บางคนใช้ตัวอักษร S เพื่อระบุว่าสูตรนั้นเป็นตัวแปรที่ราบรื่นและเขียนว่า: ในขณะที่ทฤษฎีวรรณคดีควบคุมมักใช้ Z แทน S สำหรับค่าที่ถ่วงน้ำหนักหรือเรียบเรียงเป็นพหุคูณ (ดูตัวอย่างเช่น Lucas and Saccucci, 1990, LUC1 , และเว็บไซต์ NIST สำหรับรายละเอียดเพิ่มเติมและตัวอย่างการทำงาน) สูตรที่อ้างถึงข้างต้นมาจากผลงานของ Roberts (1959, ROB1) แต่ Hunter (1986, HUN1) ใช้การแสดงออกของรูปแบบ: ซึ่งอาจเหมาะสมกว่าสำหรับการใช้ในขั้นตอนการควบคุมบางอย่าง ด้วยค่า alpha 1 ค่าประมาณเฉลี่ยคือค่าที่วัดได้ (หรือมูลค่าของรายการข้อมูลก่อนหน้า) ด้วยค่าประมาณ 0.5 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ของการวัดในปัจจุบันและก่อนหน้า ในรูปแบบการคาดการณ์ S t. มักใช้เป็นประมาณการหรือค่าพยากรณ์ในช่วงเวลาต่อไปนั่นคือค่าประมาณสำหรับ x ณ เวลา t ดังนั้นเราจึงได้แสดงให้เห็นว่าค่าพยากรณ์ที่ t 1 เป็นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบ บวกกับส่วนประกอบที่แสดงถึงข้อผิดพลาดในการทำนายถ่วงน้ำหนักเอปไซลอน เวลา t สมมติว่ามีชุดเวลาและต้องมีการคาดการณ์ค่าอัลฟาต้อง นี้สามารถประมาณจากข้อมูลที่มีอยู่โดยการประเมินผลรวมของข้อผิดพลาดการทำนายกำลังสองได้รับกับค่าที่แตกต่างของ alpha สำหรับแต่ละ t 2,3 การกำหนดค่าแรกที่จะเป็นค่าข้อมูลที่สังเกตได้ครั้งแรก x 1. ในแอ็พพลิเคชันควบคุมค่าของอัลฟามีความสำคัญในการใช้ในการกำหนดขีด จำกัด การควบคุมด้านบนและด้านล่างและมีผลต่อระยะเวลาในการทำงานโดยเฉลี่ย (ARL) ก่อนที่ข้อ จำกัด ในการควบคุมเหล่านี้จะเสีย (ภายใต้สมมติฐานว่าชุดข้อมูลเวลาเป็นชุดของตัวแปรอิสระที่แจกแจงแบบกระจายเดียวกันซึ่งมีความแปรปรวนร่วมกัน) ภายใต้สถานการณ์เช่นนี้ความแปรปรวนของสถิติการควบคุม: คือ (ลูคัสและ Saccucci, 1990): ขีด จำกัด ของการควบคุมมักจะตั้งค่าเป็นทวีคูณที่คงที่ของความแปรปรวนของการไม่ทำงานนี้เช่น - ค่าเบี่ยงเบนมาตรฐาน 3 เท่า ถ้าตัวอย่างเช่น alpha 0.25 และข้อมูลที่ได้รับการตรวจสอบจะถือว่ามีการแจกแจงแบบปกติ N (0,1) เมื่ออยู่ในการควบคุมขีด จำกัด ของการควบคุมจะเป็น - 1.134 และกระบวนการนี้จะถึงหนึ่งหรือขีด จำกัด อื่น ๆ ใน 500 ขั้นตอน โดยเฉลี่ย. Lucas และ Saccucci (1990 LUC1) ได้รับค่า ARLs สำหรับค่า alpha และภายใต้สมมติฐานต่างๆโดยใช้กระบวนการ Markov Chain พวกเขาจัดทำเป็นตารางผลลัพธ์รวมถึงการให้ ARLs เมื่อค่าเฉลี่ยของกระบวนการควบคุมได้รับการเปลี่ยนแปลงโดยค่าเบี่ยงเบนมาตรฐานหลายค่าหลายค่า ตัวอย่างเช่นเมื่อมีการเปลี่ยนแปลง 0.5 กับ alpha 0.25 ARL น้อยกว่า 50 ขั้นตอนเวลา วิธีการที่อธิบายข้างต้นเป็นที่รู้จักกันในชื่อเดียวเรียบ เป็นขั้นตอนที่ใช้ครั้งเดียวกับชุดเวลาและจากนั้นการวิเคราะห์หรือควบคุมกระบวนการจะดำเนินการในชุดข้อมูลที่เกิดเรียบ หากชุดข้อมูลมีส่วนประกอบของเทรนด์ตามฤดูกาลหรืออาจใช้การทำให้เรียบแบบทวีคูณแบบสองขั้นตอนหรือสามขั้นตอนเพื่อใช้เป็นแนวทางในการลบผลกระทบเหล่านี้ (ดูเพิ่มเติมที่ส่วนการพยากรณ์อากาศด้านล่างและตัวอย่างการทำงานของ NIST) CHA1 Chatfield C (1975) การวิเคราะห์ไทม์ซีรี่ส์: ทฤษฎีและการปฏิบัติ แชปแมนและฮอลล์, ลอนดอน HUN1 เธ่อเจเอส (1986) ค่าเฉลี่ยถ่วงน้ำหนักแบบเลขยกกำลัง J ของ Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) แผนการควบคุมค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ: คุณสมบัติและการปรับปรุง Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) การควบคุมแผนภูมิการทดสอบขึ้นอยู่กับค่าเฉลี่ยเคลื่อนที่ทางเรขาคณิต Technometrics, 1, 239-250Whats ความยาวที่ดีที่สุดสำหรับค่าเฉลี่ยที่เคลื่อนที่ได้ผู้ค้าจะทำงานบนพื้นของ New York Stock Exchange CHAPEL HILL, NC (MarketWatch) ถ้าไม่ใช่ค่าเฉลี่ยเคลื่อนที่ 200 วันวิธีคิดเกี่ยวกับ 100 วันหรือ 50 วันคำถามเหล่านี้คือคำถามที่ถามในรูปแบบใดรูปแบบหนึ่งหรือแบบอื่น ๆ โดยตัวจับเวลาการตลาดทั่วโลก คิดว่าตัวบ่งชี้ใดที่พวกเขาจะใช้เพื่อบอกให้พวกเขาเมื่อออกจากพรรคอย่างไม่น่าเชื่อที่ Wall Street กำลังขว้างปา Hulbert: March Madness นำมาใช้กับผลงานของคุณ Mark Hulbert ให้คำแนะนำแก่ผู้ชมว่าจะไม่ดำเนินการเคลื่อนไหวที่ขาดความรับผิดชอบด้วยหุ้นของพวกเขาอันเป็นผลมาจากปฏิกิริยาทางอารมณ์ต่อ March Madness สามสัปดาห์ก่อนคุณอาจจำได้ว่าฉันมุ่งเน้นไปที่ค่าเฉลี่ยเคลื่อนที่ 200 วัน หนึ่งในตัวชี้วัดที่ใช้กันอย่างแพร่หลายมากขึ้นในการกำหนดแนวโน้มการเปลี่ยนแปลงในตลาด ฉันพบว่ามันเหลือมากที่จะเป็นที่ต้องการ: ตัวอย่างเช่นประสิทธิภาพการทำงานได้ลดลงอย่างเห็นได้ชัดในทศวรรษที่ผ่านมามากเพื่อให้นักวิจัยบางคนได้เริ่มที่จะสงสัยว่ามันได้สูญเสียความสามารถในการกำหนดจังหวะการตลาดของ อีกเหตุผลหนึ่งที่บางตัวชี้วัดด้านการตลาดไม่พอใจกับค่าเฉลี่ยเคลื่อนที่ 200 วันไม่ใช่คำวิจารณ์ต่อตัว แต่เป็นลักษณะโดยนัยสำหรับตัวบ่งชี้แนวโน้ม: ตามนิยามจะไม่เลือกด้านบน เพราะสัญญาณขายจะไม่ถูกเรียกใช้จนกว่าตลาดจะลดลงต่ำกว่าระดับเฉลี่ยของ 200 วันซื้อขายก่อนหน้านี้ ถึงเวลานั้นแน่นอนว่าตลาดอาจประสบความสูญเสียมาก ด้วยเหตุผลทั้งสองประการนี้จำนวนของคุณที่อ่านคอลัมน์ 3 สัปดาห์ที่ผ่านมาของฉันกระตุ้นให้ฉันวัดประสิทธิภาพของค่าเฉลี่ยเคลื่อนที่ที่สั้นลงมาก ดังนั้นนั่นคือสิ่งที่ฉันได้ทำในคอลัมน์นี้ แต่น่าเสียดายที่ฉันไม่ได้ผลที่แตกต่างกันมากกับค่าเฉลี่ยเคลื่อนที่ที่สั้นลงที่ฉันศึกษา เพื่อให้มั่นใจว่าระยะสั้นของค่าเฉลี่ยเคลื่อนที่จะดีกว่า 200 วันในการออกไปเร็วกว่านี้เมื่อตลาดปิดตัวลง แต่พวกเขายังได้รับ whipsawed สำหรับการสูญเสียมากขึ้นเช่นกัน ความสมดุลของประวัติของพวกเขาในระยะยาวไม่แตกต่างกันอย่างมีนัยสำคัญกับค่าเฉลี่ยเคลื่อนที่ 200 วัน นอกจากนี้ค่าเฉลี่ยของแต่ละค่าเฉลี่ยที่ฉันทดสอบได้รับผลกระทบจากการลดลงของอัตราผลตอบแทนในช่วงหลายทศวรรษที่ผ่านมาเช่นเดียวกับที่พบโดยเฉลี่ย 200 วัน น่าแปลกใจที่ผลเหล่านี้ Norm Fosback อดีตหัวหน้าสถาบันวิจัยเศรษฐมิติและบรรณาธิการของ Fosbacks Fund Forecaster ระบุว่าเราไม่ควรเป็นเช่นนั้น ในตำราที่เขาเขียนเมื่อสามทศวรรษที่ผ่านมาได้รับการยกย่องว่า Stock Market Logic เขาเขียนว่า: ไม่มีตัวเลขมหัศจรรย์ในแนวโน้มดังต่อไปนี้ ความยาวเฉลี่ยที่เคลื่อนที่ได้บางส่วนอาจทำงานได้ดีที่สุดในอดีต แต่หลังจากที่ทุกอย่างต้องทำงานได้ดีที่สุดในอดีตและโดยการทดสอบทุกสิ่งทุกอย่างที่เป็นไปได้วิธีหนึ่งที่จะช่วยได้ แต่ไม่พบสิ่งนี้ ต่อไปนี้ระบบที่จริงทุกความยาวเฉลี่ยที่คาดการณ์ทำนายสำเร็จในระดับมากหรือน้อย ถ้ามีเพียงหนึ่งหรือสองความยาวทำงานอัตราต่อรองที่สูงที่ประสบความสำเร็จผลได้โดยบังเอิญ สิ่งที่เกี่ยวกับความตายข้ามก่อนที่ฉันจะออกจากเรื่องของการย้ายค่าเฉลี่ยของความยาวที่แตกต่างกันฉันยังต้องการที่จะพูดคำไม่กี่คำเกี่ยวกับความพยายามที่จะรวมสองค่าเฉลี่ยเคลื่อนที่ที่มีความยาวแตกต่างกันไปในระบบแนวโน้มเดียวต่อไปนี้ หลายคนคิดว่ามันเป็นหยาบคายเมื่อค่าเฉลี่ยเคลื่อนที่ที่สั้นลงไปต่ำกว่าอีกต่อไปและรั้นเมื่อระยะสั้นสั้นขึ้นเหนืออีกต่อไป โดยวิธีการในกรณีของ 50 วันและค่าเฉลี่ย 200 วันทั้งสองไขว้ที่เรียกว่าตายข้ามและกางเขนสีทอง ฉันได้ตรวจสอบการเสียชีวิตและเครื่องหมายกากบาทสีทองตลอดช่วงศตวรรษที่ผ่านมาสำหรับค่าเฉลี่ยอุตสาหกรรมดาวโจนส์ เหมือนก่อนหน้านี้ฉันพบว่าความกล้าหาญในการคาดการณ์ของพวกเขาได้ลดลงอย่างมากในช่วงหลายทศวรรษที่ผ่านมา สังเกตจากตารางข้างต้นว่าในช่วงเวลาทั้งหมดที่ Dow มีอยู่ตั้งแต่ปีพ. ศ. 2439 ทั้งสองเหตุการณ์ครอสโอเวอร์ได้รับการยกย่อง อย่างไรก็ตามโปรดทราบว่าตั้งแต่ปีพ. ศ. 2513 พวกเขาทำผลงานที่แย่กว่ามากโดยมีตลาดหนึ่งในสามและหกเดือนหลังจากที่ไม้กางเขนตายทำดีกว่าค่าเฉลี่ยของทองคำต่อไป กำไรเฉลี่ยของดาวโจนส์ในช่วงเดือนถัดไปค่าเฉลี่ยของดาวโจนส์ในช่วง 3 เดือนข้างหน้า Copyright copy2017 MarketWatch, Inc. สงวนลิขสิทธิ์ ข้อมูลในวันที่จัดทำโดย SIX Financial Information และอยู่ภายใต้เงื่อนไขการใช้งาน ข้อมูลในอดีตและปัจจุบันในปัจจุบันที่จัดทำโดย SIX Financial Information ข้อมูลในวันล่าช้าตามข้อกำหนดการแลกเปลี่ยน ดัชนี SampPDow Jones (SM) จาก Dow Jones amp Company, Inc. คำพูดทั้งหมดอยู่ในรูปของเวลาท้องถิ่น ข้อมูลการขายล่าสุดล่าสุดตามเวลาจริงของ NASDAQ ข้อมูลเพิ่มเติมเกี่ยวกับสัญลักษณ์การซื้อขายของ NASDAQ และสถานะทางการเงินในปัจจุบัน ข้อมูลในวันดาล่าช้า 15 นาทีสำหรับ Nasdaq และ 20 นาทีสำหรับการแลกเปลี่ยนอื่น ๆ SampPDow Jones Indices (SM) จาก Dow Jones amp Company, Inc. ข้อมูลภายใน SEHK จัดทำโดย SIX Financial Information และล่าช้าอย่างน้อย 60 นาที คำพูดทั้งหมดที่อยู่ในเวลาท้องถิ่นแลกเปลี่ยน. ไม่พบผลลัพธ์
Comments
Post a Comment